Comment on Software Efficiency:
Loops, Subroutines, and Interpretive Execution

J. W. Layland

Communications Systems Research Section

This article will discuss the relationship between the efficiency of software opera-
tion and the use within that software of conventional control structures such as
loops and subroutines. These control structures fold’ a program to reduce its stor-
age requirements at the expense of increased execution time. The typical intuitive
response to this consideration is one of “the faster, the better.” In some contexts,
this is far from correct. The extent to which folding should be done depends upon
many factors, including especially the program’s total size. The extent to which
this folding can actually be done depends upon details of its operation, so the analy-
sis presented in this article will of necessity retreat from reality, and assume that
the program in question can be folded arbitrarily.

l. Introduction

This article will discuss the relationship between the
efficiency of software operation and the use within that
software of conventional control structures such as loops
and subroutines. These control structures “fold’ a program
to reduce its storage requirements at the expense of in-
creased execution time. The typical intuitive response to
this consideration is one of “the faster, the better.” It will
be seen shortly that in some contexts, this is far from cor-
rect. The extent to which folding should be done depends
upon many factors, including especially the program’s
total size. The extent to which this folding can actually be
done depends upon details of its operation, so the analysis
presented in this article will of necessity retreat from

124

reality, and assume that the program in question can be
folded arbitrarily. We assume further that we are in a
position to be able to pay for only as much storage and
computing time as actually used. This implies either that
we are using some small part of a fairly priced multi-
programmed computation center, or that we are assem-
bling a computational facility that is being optimized for
our particular task.

I1. Problem Definition and Notation

Assume that a task has been defined in terms of a
Straight Line Machine Algorithm (SLMA) of S steps on
a standard computational resource. The label, SLMA, is a

JPL TECHNICAL REPORT 32-1526, VOL. Xiv

“corruption” of the logical straight line algorithms con-
sidered by Savage (Ref. 1), and implies only that each
step is used exactly once in task execution, and no loops
or other control strategies are employed that cause mul-
tiple usage of steps. No specific machine implementation
is implied. It is the cost of various implementations of this
task that is of interest. Were we, for example, to imple-
ment the task directly in the SLMA form, it would take S
units of time, and S storage elements, resulting in a cost
that is proportional to S for the storage of the algorithm
alone. This is not the only cost element in the machine.
Other machine costs, denoted in total as M for the re-
mainder of this article, will be assumed to be normalized
by the cost of a single storage element. M consists of M.,
computer processor cost; M, task data cost; and M,
external, or peripheral cost. For a medium-scale processor,
M. is currently on the order of 10* or larger. Common
minicomputers have an M, equal in cost to about 10?
instruction storage elements, and the integrated circuit
micro-computers have, or soon will have, an M, below
102, The total cost of the directly implemented SLMA is

C,=S:+S-M (1)

The first term of Eq. (1) represents cost of storing the
algorithm in a computer memory, and can be drastically
reduced by use of the control structures of interest. At the
same time, the execution time is increased by the over-
head needed to perform the control function. For the
remainder of this article, § will be used to denote the
amount of overhead, in machine steps, needed to perform
one control operation in a folded implementation of an
algorithm.

lI. Loops

A loop exists in an algorithm implementation whenever
some particular sequence of steps of the algorithm is
executed repeatedly. This sequence of steps is followed
by the 6 overhead steps that determine whether the
algorithm steps should be executed again, that modify
pointers to the data manipulated by the algorithm, and
do other house-keeping chores that are not inherent to the
algorithm, but that are needed because of the way it is
implemented.

Suppose that our task of S steps can be folded arbi-
trarily, and that it is to be implemented by repeated
executions of a loop of B instructions. This loop must
obviously be executed S/8 times. Including overhead,

JPL TECHNICAL REPORT 32-1526, VOL. XIV

the total time is (8 + 8)+S/B, and the total storage is
B + 6 + M. The total operating cost is

Co=(B+06+M)-(8+6):S/B (2)

We wish to determine a value for 8 such that Eq. (2) is
minimized. For M =~ 0, the optimum 8 can be determined
trivially by treating 8 as a continuous variable; differenti-
ating by it, and solving the resultant equation. The opti-
mum g is equal to the overhead §. At this point (M = 0),
the minimum task cost, C% is

Ct=44-8 (3)
which is a linear function of S.
For nonzero M, the optimum g is again approximately

determined by treating 8 as continuous; differentiating
by it, and solving

. S
0=Z5=gB+0E+0+M)
—1 1 1
X[ﬁ+p+a+M+,e+o])

To solve Eq. (4), make the change of variables » = M /4,
and clear fractions, producing

(B+o(L+n](B+0)=p[B+0(1+7]+B(B+8)
)

After eliminating common terms from Eq. (5), its solution
can be seen to be

B*=06(1+ ¥
C;=8-0-[1+ 1+ /] (6)

Suppose that instead of being able to fold the algorithm
into one loop, we were forced to use several, say N, with
the i-th loop containing 8; steps. Each of the loops is exe-
cuted for S/N total steps, causing S/(B; * N) repetitions of
the i-th loop. Hence total task time is

—s 1
T:Z_Z\T'E(0+ﬁi)

and the storage required is

N

W=M+Z(0~I—Bi)

i=1

125

since the overhead steps are required for each of the
loops. The task operational cost is

C3:|:M+iﬁ+ﬁ] [ZN-—;WM]

_ g

By symmetry, 8; = f3, for all i, so that

C3=|:%+6+,80:I-S-N-[I;O]-[0+,80] (8)

The solution to Eq. (8) can be determined by analogy
with Eqgs. (2) and (6) above. Let ¢ = M /(N +). Then

Bo=0(1+¢&#
Ct=N-S-9-[1+(1+&H]

9)

For moderate M, the minimum C; represents an N-fold
increase in cost over the minimum C,. For large M, the
minimum of both C, and C, approaches S+ M.

In an actual program, one would never have the option
to fold a program as arbitrarily and completely as was
done here. The option does exist to fold or not fold some
particular sequence of steps, or perhaps to fold it partially.
Suppose that the sequence of operations of current inter-
est contains s;, steps that are to be folded (perhaps) into
repeated execution of a loop of B steps. In Eq. (9), 1/N
could be interpreted as the fraction of total algorithm
steps performed by each of the loops. As such, 1/N corre-
sponds to si/S in the present problem, and to a first-order
approximation, the optimum g is given by

M Icl/2
pr=0-(1+5- %) (10)

If one of the allowed values for gy falls close to this figure,
then construction of the k-th loop at this figure is one por-
tion of a minimum cost implementation. If allowed B
values are below 8, the s; steps should almost certainly
be implemented without the loop folding, because fold-
ing overhead adds proportionately more to task time than
is saved in storage.

IV. Subroutines

Subroutines are a flexible means of causing multiple
usage of specific steps within an algorithm implementa-
tion when these steps exist at scattered places within the
algorithm. Just as with loops, a certain number of over-
head steps must be executed to perform control operations

126

of the subroutine linkage, and to establish data pointers
for each distinct execution of the subroutine, As before,
9 will denote the number of overhead steps per sub-
routine execution.

Suppose that our task of S steps can be folded arbi-
trarily, and that it is to be implemented by a sequence of
calls to a subroutine of B instructions. There must obvi-
ously be S/8 calls to this subroutine. Including overhead,
the total time is (8 + 8) * S/B, and the total storage is S/8
for subroutine calls, 8 + 6 for the subroutine, plus M for
data, etc. The total operating cost is

Co=(M+pB+0+S8/8)-(B+0):S/8 (1)

As before, we pretend that g is a continuous variable and
locate the minimum of C, by differentiating with respect
to 8 and solving for the zeros of that derivative. After
some manipulation, we find that the minimizing g are the
solutions to the cubic equation

B = B(S + M6 + 6?) + 236 (12)
For large S, the solution to Eq. (12) is approximately
given by
B = (S + Mo)%

(13)

CZ:S[MJF [ZS+M-6]]

(S + Mg)*
The minimum cost is asymptotic to 2+ 8%2 if M << S.

Subroutine structure is of course not limited to a single
level. Subroutines can call subroutines that in turn call
further subroutines ad infinitum. We would like to know
how many levels can be used as well as how big each of
the levels should be. Let 8; be the number of algorithm
steps performed by one call to the i-th level subroutine,
and let n be the number of subroutine levels. The n-th
level subroutine then consists of B, directly executed
algorithm steps, and the i-th level subroutine (for i=~n)
consists of B;/Bi.. calls to the (i + 1)** level subroutine.
Let T (B,) be the time to execute the steps at or below the
B; level. We consider S = Bo, Br.; = 1. Then

B
+g e+ T(ﬁz))>

ST T

B B B
><(0+---+B[;‘(e+pn)))) (14)
1 1 1 1
=56 (Tt +Z§Z>

JPL TECHNICAL REPORT 32-1526, VOL. XIV

The total storage for all subroutines with their entry over-
head (disregarding base storage costs, M) is

_S B\, ... Bas
W—-Bl+<0+ﬁz>+ +(0+,8n)

+(0+ﬁn)=n-0+zlf—j (15)

The task cost in this implementation is, as before,
W T (S). For fixed n, the minimum cost can be deter-
mined by treating the {8} as continuous variables, and
finding the zero(s) of the derivatives of cost with respect
to each .

Bi _Bis 1
Ozﬂi'ang(.C) _ B _ B Bin V.
o B 1y Zi
— Bis 6 - Bi

(16)

Direct analytical solution of Eq. (16) appears hopeless, so
the reasonable tactic is to search for upper and lower

bounds to the {3;}.

For an assumed fixed n, the lower bound is constructed
quite simply as the solution to

_Bi B
Biis B’

Any solution to Eq. (17) makes the right hand side of
Eq. (16) negative for all i (since an always negative term
was dropped from Eq. (16) to produce Eq. (17)). This in
turn implies that minute increases in any or all of the 8;
will decrease task cost, and hence that solutions to Eq. (17)
are everywhere below the optimum {B;}. Applying to
Eq. (17) the boundary conditions that 8, = S, and B, = 1
produces the solution

0 \2 (17)

ﬁ’i — S(n+1—i)/(n+1), V‘i (18)

Rearranging Eq. (16) into the form of Eq. (17) plus an
error term is a first step in developing an upper bound
solution:

0= === ; (19)
1/6 + 3 1/

Substitution of Eq. (18) into the bracketed expression of
Eq. (19) produces n6S*/+*>_ Thus at 8, ;, Eq. (19) is ap-

JPL TECHNICAL REPORT 32-1526, VOL. XIV

proximately n+§+S-7/+1_ For large S, moderate n, most
j, this is much less than g;_,/8; = §/®*V. Thus Eq. (17) is
almost identical to Eq. (19) for most f, and it is only for
i near n that significant error is introduced.

The subroutine depth, the value of n, for which task
cost is minimum is yet to be determined. We restrict the
{B:}, the subroutine sizes, to be those of Eq. (18). For
convenience, let = g, = SV, Inserting Eq. (18) into
Eq. (15) and Eq. (14), the storage cost W, and task time T
are given by

W=ng+n+1)8
—gp. (L 1B
T =86 (0+ ﬁ——l)

The total task cost is C = W« T. The expression can be
simplified somewhat by assuming n >>1, 7" << 1:

(20)

C=n-S-(0+,8)-(1+-B%I> @1)

The value of n that minimizes C is found by setting its
first derivative to 0:

_ . dc_ 1 0/(e—1)
0=n-c dn‘l‘“"ﬁ[em (B“l)+9]

(22)

Equation (22) could be solved directly numerically to
relate 3, the smallest subroutine size, to the overhead, 4,
but an approximate analytic answer may be obtained by
assuming B — 1 = 8:

1 B—9
0=1 ﬂnﬁ[ﬁ+0] (23)
Eq. (23) is made tractable by the approximation

B—0\ _ 0o
2{m}~fﬂﬂ tnf

which is valid to within a few percent for § > 10. With
this approximation, Eq. (23) becomes a quadratic in {n(g)
with the solution

1+ 8*%
1+ Z
in(8) = In(6) —(”2@)—
(24)
{nS
n:

ing ing\? Y
7*[(7) +2]

127

For large 6, B is approximately equal to 4, and task cost
is given by

C =~ 46Sin (S)/In (6) (25)

The overhead 4 sets a lower bound to the smallest sub-
routine size, and hence places an upper limit to n. As
the {B;} found in Eq. (18) represent a lower bound
component-wise to the true minimizing {8;}, we expect
that the n, which minimizes cost at the true {8;}, will be
greater than the n found in Eq. (24).

To find an upper bound solution for the {#;}, we must
determine conditions under which {8C/98;} is positive
for all i. Equation (16) can be rearranged into the form

3C né + ﬁﬂf/ﬁm
H+(18)5B—:=B%—18i+1. Bizy + ——
’ 1/ + 2 1/8;

(26)

where H* () is an always positive function of {8}. Let us
denote as g (6, n, B) the fraction in parentheses in Eq. (26),
and as g+, an upper bound to g (6, n, 8). The lower-bound
solution to {#8;} is given in Eq. (18). We construct a tenta-
tive upper-bound solution from it as

—i\7
g=("g) s @)

where 7 is a small constant yet to be determined. A second
tentative upper bound B! is constructed from the first by
solving sequentially from i = n down:

e = 1
(28)
B =B, (B, + g)]*
With this solution, 7 is adjusted (if possible) so that
BgI=pr, allé (29)
This restriction implies that
Bi=[g1, (B, + g%
(30)
Bi=8;.,"(Bi_, +g(f,n BY))]*
which in turn implies that
oC
— R 1
aBi “‘Oa Vh at ﬂi (31)

128

That is, {8!} is an upper-bound solution to {;}, but as
B°== gt for all i, {9} is also an upper-bound solution for
the selected 7. It remains to determine 7.

We expand the solution for 8} by substituting Eq. (27)
into Eq. (28) and iterating downward:

K+1 . -
:L—K — H [Sn(K+3—])/(n+1) + g+]2

j=1

1 — QUK+D)/(n+1) o Q(1-7) (1-2~K-1
1 =87 / §a-g)

K+1

It
g -
X]:[l: 1+ ST (K+3-1)/(n+D) o Sl_,,:l (32)
i=1

The product in Eq. (32) can be converted to a sum by the
use of logarithms, and a summable upper bound to the
sum of logarithms is generated by the use of In (1+X) =X,
for all X.

B K = §N(K+1)/(n+1) o §1-1) (1-27K-1
nkK —
K+1

g, 1
X exp g1y E :2:'511<K+a—;‘)/(n+1)
j=1

The sum in Eq. (33) is a simple geometric progression. If
the right hand side of Eq. (33) is forced to be below
RS, = SHED/() « §i-n then B == B ., as desired.
For convenience, denote 287 = §7/¢+1_ The bound con-
constraint becomes

(33)

K+2 .
(K+3)_B__’8

SU-m (-2-X-Y exp {S{fin B 51 } =1 (34)

gy
-

If we assume B > 2, then the inequality of Eq. (35) is
assured whenever

or

LBRES ST, Vo (35)

g. =B (8 —2)S-1InS*" (36)

A value for g. can be conveniently derived by manipulat-
ing g(f,n,B°) : g. = 6 (nf + nB + S'-7), thus

8(nf +nB + ST ZR(B— 2SS (37)

Let us assume an n that varies with § as n = A InS, for A
constant. This is consistent with past findings Eq. (24) at

JPL TECHNICAL REPORT 32-1526, VOL. XIV

the lower bound. If n grows more rapidly than A {nS, then
task cost will grow more rapidly than S -#nS, and it will
be seen that this is achievable at n = A fnS. Assuming 7 is
approximately 1, substitution of n = X {nS into the in-
equality Eq. (37) produces

g+ (AInS [0 + et/A] + S17) == (2/* — 2eV/A) - §1-1 Y §1-7
(38)

It can be shown that $'-7 must grow at least as fast as
p*InS (for u constant) to satisfy Eq. (38).

A
e P [0 + /2] + 1) = (e** — 2¢'/*) In (u InS)

(39)
Equation (39) is satisfied for large S for any arbitrarily

small constant u since the right hand side is increasing
with S. For §'-7 = 4 {nS, 5 converges to 1 for large S.

Using these forms for n and S*-7, the task time and stor-
age are given by

1 1 1
T=5 0(7_'_”1?118 el/'\—1> (40)
W= 1In(S)(A[8 + &/*] + pe")
We are particularly interested in behavior at large S, so
the second term of T may be ignored, as it converges to 0
for large S. The last term of W can also be ignored as

can be an arbitrarily small constant, negligible with re-
spect to A. Thus

T=S

W= In(S)*x [0 + 4] (41)

The minimum of C = T+W is at that A that minimizes
storage, i.e., at

8 =8(ng—1), where g = e1/* (42)
The minimum cost is thus
C=S-(n(S)-B8 (43)
and
CZ S+ in(S) —— 44
<SS a1 (44)

JPL TECHNICAL REPORT 32-1526, VOL. XIV

The value of g defined from Eq. (42) is below the lower-
bound 8 for all values of 6. Hence the value of n which
corresponds to Eq. (42) is larger than that of Eq. (24), and
it may be argued that this n is an upper bound to the
true n.

From the form of the upper- and lower-bound solutions,
it may reasonably be inferred that the subroutine depth n
for minimum task cost is given by n =\ {n S, for A some
small constant which makes S/ =~ #, and that minimum
task cost is equal to v*S+inS-68/ind where v is a small
constant on the order of 1.

V. Interpretation

One can perform almost the same sequence of analysis
for execution with an interpreter as for multiply-nested
subroutines. The interpreter is another tool with which
a software system designer can reduce storage at the
expense of increased execution time. The interpreter re-
quires some fixed minimum overhead in storage to hold
the interpretive mechanism itself, and a smaller amount
of storage associated with subroutine linkage via the
interpreter. There is a time overhead associated with
interpreted subroutine linkage which is greater than the
corresponding storage overhead, and there is a time
overhead associated with each interpreted step. To coun-
terbalance these effects, the storage required for an in-
terpreted step is reduced by a factor of 2 to 10 (or more)
from what it would be without the interpreter. Although
the specific parameters are different from those of the
multilevel subroutines, the conclusion reached is certain
to be quantitatively the same as just presented for sub-
routines: that the decision to fold the program is a good
one provided the work performed in the lowest level
routines is roughly equal to the overhead work encoun-
tered in getting there.

There are a wide variety of other options that have not
and will not be covered here. Both program code and data
may be stored in a secondary memory, and called to main’
storage when needed, instead of being assumed to all
reside in main storage as was done here. This call for sec-
ondary memory data may be either program controlled,
or under system control as part of a virtual memory struc-
ture. In the latter case, both processor and swapping
scheduling algorithms affect the task cost, as does the
installation’s pricing policies. Another piece of this mas-
sive “jigsaw puzzle” called computational efficiency is the
effect of memories and processors with a variable cost that
is some function of the innate device speed. These are
some of the open questions.

129

VI. Implications for Reality

The analysis just presented has attempted to reveal
the efficiency implications of some conventional software
structures. The actual problems solved are abstractions
of the real programming questions of how much a pro-
gram should be folded by loop and subroutine control
structures. Such questions are of direct interest to two
types of people: to system designers who can build or buy
exactly the right amount of hardware to do their job, and
to users of large-scale, time-sharing, multiprogramming
systems where one pays only for resources used. Our de-
parture from reality consists of the drastic assumption that
the programs can be folded arbitrarily, i.e. without regard
to content. While this is clearly false, and hence degrades
the quantitative conclusions, the qualitative conclusion

should remain valid, namely: whenever the storage for a
task is dominated by program rather than data, the deci-
sion to fold that program to reduce its storage, by any
available means, is a good one provided that the work
performed in the lowest level routines is roughly equal to
the overhead involved in the control structures of the
higher levels.

The Structured Programming and “levels of abstrac-
tion” techniques (Ref. 2) is currently growing in popu-
larity for the development of complex software systems
that are transparent and readily understandable. The
technique leads naturally to extensive use of multiple
level subroutines. Are such programs efficient? The analy-
sis presented above says yes.

References

1. Savage, J. E., and Harper, L. H., “Contributions to a Mathematical Theory of
Complexity,” in The DSN Progress Report, Technical Report 32-1526, Vol. V,
Jet Propulsion Laboratory, Pasadena, Calif., Oct. 15, 1971,

2. Baker, F. T., “System Quality through Structured Programming,” AFIPS Con-
ference Proceedings, Vol. 41, Part I, pp. 339-343, 1972 Fall Joint Computer
Conference, Los Angeles, Calif., Dec. 5-7, 1972.

130

JPL TECHNICAL REPORT 32-1526, VOL. XiV

